axiolabiolingual plane - traduction vers arabe
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

axiolabiolingual plane - traduction vers arabe

TYPE OF WAVE PROPAGATING IN 3 DIMENSIONS
Plane waves; Plane Wave; Planewave; Plane-wave
  • The [[wavefront]]s of a plane wave traveling in [[3-space]]

axiolabiolingual plane      
المُسْتَوَى المِحْوَرِيُّ الشَّفَوِيُّ اللِّسانِيّ
axiolabiolingual plane      
‎ المُسْتَوَى المِحْوَرِيُّ الشَّفَوِيُّ الِّلسانِيّ‎
trying plane         
LARGE WOODWORKING HAND PLANE USED FOR FLATTENING AND JOINTING WORKPIECES
Try plane; Trying plane
مشحاج تسوية

Définition

Supplementary Ideographic Plane
<text, standard> (SIP) The third plane (plane 2) defined in Unicode/ISO 10646, designed to hold all the ideographs descended from Chinese writing (mainly found in Vietnamese, Korean, Japanese and Chinese) that aren't found in the {Basic Multilingual Plane}. The BMP was supposed to hold all ideographs in modern use; unfortunately, many Chinese dialects (like Cantonese and Hong Kong Chinese) were overlooked; to write these, characters from the SIP are necessary. This is one reason even non-academic software must support characters outside the BMP. Unicode home (http://unicode.org). (2002-06-19)

Wikipédia

Plane wave

In physics, a plane wave is a special case of wave or field: a physical quantity whose value, at any moment, is constant through any plane that is perpendicular to a fixed direction in space.

For any position x {\displaystyle {\vec {x}}} in space and any time t {\displaystyle t} , the value of such a field can be written as

F ( x , t ) = G ( x n , t ) , {\displaystyle F({\vec {x}},t)=G({\vec {x}}\cdot {\vec {n}},t),}

where n {\displaystyle {\vec {n}}} is a unit-length vector, and G ( d , t ) {\displaystyle G(d,t)} is a function that gives the field's value as dependent on only two real parameters: the time t {\displaystyle t} , and the scalar-valued displacement d = x n {\displaystyle d={\vec {x}}\cdot {\vec {n}}} of the point x {\displaystyle {\vec {x}}} along the direction n {\displaystyle {\vec {n}}} . The displacement is constant over each plane perpendicular to n {\displaystyle {\vec {n}}} .

The values of the field F {\displaystyle F} may be scalars, vectors, or any other physical or mathematical quantity. They can be complex numbers, as in a complex exponential plane wave.

When the values of F {\displaystyle F} are vectors, the wave is said to be a longitudinal wave if the vectors are always collinear with the vector n {\displaystyle {\vec {n}}} , and a transverse wave if they are always orthogonal (perpendicular) to it.